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Abstract

The approach proposed by Carnap for the development of logical bases for probability theory is in-
vestigated by using formal structures that are based on epistemic logics. Epistemic logics are modal logics
introduced to deal with issues that are relevant to the state of knowledge that rational agents have about
the real world. The use of epistemic logics in problems of analysis of evidence is justified by the need to
distinguish among such notions as the state of a real system, the state of knowledge possessed by rational
agents, and the impact of information on that knowledge.

Carnap’s method for generating a universe of possible worlds is followed using an enhanced notion
of possible world that encompasses descriptions of knowledge states. Within such generalized or epistemic
universes, several classes of sets are identified in terms of the truth-values of propositions that describe either
the state of the world or the state of knowledge about it. These classes of subsets have the structure of a
sigma algebra.

Probabilities defined over one of these sigma algebras, called the epistemic algebra, are then shown to
have the properties of the belief and basic probability assignment functions of the Dempster-Shafer calculus
of evidence.

It is also shown that any extensions of a probability function defined on the epistemic algebra (repre-
senting different states of knowledge) to the truth algebra (representing true states of the real world) must
satisfy the interval probability bounds derived from the Dempster-Shafer theory. These bounds are also
shown to correspond to the classical notions of lower and upper probability. Furthermore, these constraints
are shown to be the best possible bounds, given a specific state of knowledge.

Finally, the problem of combining the knowledge that several agents have about a real-world system is
addressed. Structures representing possible results of the integration of that knowledge are introduced and
a general formula for the combination of evidence is derived. From this formula and certain probabilistic
independence assumptions, a generalization of the rule of combination of Dempster is readily proved. The
meaning of these independence assumptions is made explicit through the insight provided by the formal
structures that are used to represent knowledge and truth.

Finally, simple cases of combination of dependent evidence are discussed as an introduction to more -
general problems of general combination that are examined in a related paper.
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I
INTRODUCTION

I-1. Motivation

The purpose of this work is to develop of formal theoretical foundations that improve the understanding
of the nature and usefulness of evidential reasoning concepts. These foundations have been sought both
in mathematical logic, as the major conceptual approach to the study of formal reasoning systems, and
in probability theory, as the foremost multivalued logic approach to the analysis of issues related to the
likelihood of propositions as true descriptors of the state of affairs in the real world.

The approach proposed by Carnap [3] for developing logical bases of probability theory is extended here
to information systems that model the state of a real system and the state of knowledge that rational agents
have about it. These systems [12] are important in a number of artificial intelligence applications that are
concerned with the interpretation and analysis of imprecise and uncertain evidence about the real world.

The methodology followed here is also related in several ways to the probabilistic logic approach of
Nilsson [14] in its conception of probabilities as valuations over a family of subsets of a universe of possible
worlds that constrain, to different degrees, the probability values over other subsets not in the family. The
major differences between this work and the probabilistic logic approach are in the use of epistemic concepts
and the derivation of global conditions for probability function extension (i.e., lower and upper probabilities),
as opposed to local formulas derived from interval probability theory or from interpolative techniques.

The logical approach to probabilities proposed by Carnap considers the latter as valuations over a uni-
verse of possible worlds. These valuations allow quantification of the degree of support (called confirmation
by Carnap) provided by certain propositions (describing evidential knowledge about the world) for the truth
of other propositions describing the state of a real-world system of interest [4].

The work presented here departs from Carnap’s approach by considering that evidence provides infor-
mation about the truth of some propositions while failing to give any indication as to the truth of others.
For example, the discovery of a lock of hair at the scene of a crime may be helpful in identifying the criminal
as belonging to one or more classes of suspects (having similar hair}), but may be of no use in pinpointing
specific suspects. As shown by this simple example, a piece of evidence enhances the state of knowledge
about the truth of certain propositions, rather than about the truth of all propositions. At any single step
in the process of acquiring and analyzing evidence it must be recognized that, while the world may be in one
of several possible states, the state of knowledge will generally not be sufficient to enable precise definition
of that state.

The approach proposed hLere, while firmly rooted in basic probability theory, recognizes that the ac-
quisition of evidence has the potential of changing the state of knowledge about the real world, but not of
altering the actual state of the world itself. To properly model the effect of such changes in knowledge state,
formalisms must be developed that make it possible to model both the state of external systems and the
state of knowledge about them.

In this work, this foundation is sought in modal logics that augment standard propositional logic by
considering an epistemic operator K that represents the state of knowledge that a rational agent has about
the situation of a real-world system. These logics, originally studied by Hintikka[1], were first applied to
artificial intelligence problems by Moore [2]. In epistemic logics, propositions may not only be true or false,
as is the case in classical logic, but may also be known to be true or false, or they may not be known
to be either true or false. Epistemic logics have been used to study the knowledge properties of artificial
intelligence systems, having recently been applied to the design of intelligent robots[12].

Instead of considering a universe of ontological possibilities (as was done by Carnap), each describing a
different state of the real world, in this approach the corresponding epistemic universe consists of descriptions
of possible states of the real world as well as of the knowledge rational agents have about it.
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Probabilities defined in this universe reflect uncertainty (derived as the result of prior experience or
rational considerations) regarding the possible conclusions that may be derived from the evidence. In Car-
nap’s approach, on the other hand, probabilities must be assigned so as to reflect the effect of evidence on
any proposition, irrespective of whether or not that proposition can be related experimentally or rationally
to the actual contents of such evidence.

In this work, the effect of evidence is represented as changes in the state of knowledge of rational agents.
Uncertain knowledge is represented as probability functions defined over a sigma algebra of subsets of the
epistemic universe. The elements of this set collection, called the epistemic algebra, are subsets of the
epistemic universe that are characterized by common epistemic properties (i.e., the same propositions are
known to be true). These probabilities are related to similar functions defined over truth algebras, that are
subsets of possible worlds of the epistemic universe sharing the same ontological properties, (i.e., the same
propositions about the world are true in each subset).

The major results of this work prove that this generalization of the Carnap approach validates the
mathematical theory of evidence of Dempster and Shafer as the proper formalism for the study of evidential
problems. These results include all major theorems of Dempster-Shafer theory, including the rule of com-
bination of Dempster. Moreover, the insight provided by the basic conceptual structures introduced here
allow a clearer characterization of the semantic aspects of the Dempster-Shafer calculus of evidence.

1t is also shown that probabilities defined on the epistemic algebra induce lower and upper probabilities
in the truth algebra that are identical to the well-known interval bounds derived in the Dempster-Shafer
theory. These results are also consistent with the interpretation of belief measurement advanced by Suppes [5]
in his critique of the axiomatic approach of Savage[13].

It is important to note that these results were obtained by simply Carnap’s method to epistemic struc-
tures. Their derivation appeals only to basic concepts of probability theory and epistemic logic. From this
standpeint, Dempster-Shafer theory can be regarded as an enhancement of the classical Bayesian approach
to induction which is able to distinguish among different knowledge states.

1-2. Presentation Approach

A major objective of this paper is the development of a comprehensive understanding of episternic
issues that bridges the gap between approaches to knowledge representation and manipulation derived from
probability theory, on one hand, and mathematical logic, on the other.

Because of the reliance of different methods on dissimilar types of formalisms — those stressing contin-
uous variable analysis, in probabilistic approaches, and those stressing discrete mathematics, in the case of
symbolic logic — it has been difficult to find a comnmon ground for discussion and presentation that will be
readily understandable to persons who are familiar only with the concepts and structures of a single method-
ology. To solve these expository problems we have chosen to present the basic constructs and tenets of each
discipline (which are, of course, well known to specialists on both sides) before proceeding to interrelate
them within the framework provided by the concept of epistemic universe.

To facilitate the understanding of certain issues, we have also introduced some simplifications, that, if
viewed solely from the perspective of the results presented herein, are actually unnecessary. For example, the
assumption of finite universes and subset algebras is intended to avoid some of the complexities introduced
by the infinite universes and sigma algebras. The results can, however, be readily extended in ways that do
not constrain their essential validity.
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I-3. Organization

This work is divided into six sections beginning with this introduction.

Section II presents the basic concepts and axioms of epistemic logic that underlie the concept of epistemic
universe. The important distinction between necessary implication {or entailment) and ordinary implication
is also discussed so as to differentiate implications that are valid in every possible world from those that are
true only in some possible worlds.

The major result presented in this section states that the epistemic universe may be partitioned into
a family of epistemically equivalent disjoint subsets. Each of these sets is characterized by the fact that
propositions known to be true in one possible world are the same that are known in any other possible world
in the same subset (i.e., both worlds, as far as we know, are equivalent). Furthermore, these subsets can be
associated with certain propositions representing the most detailed or specific knowledge available in each
possible world in that epistemic subset.

Section III introduces the basic concepts of probability theory. Emphasis is placed on the nature of
subset algebras as the domain of definition of probability functions. It is shown that probabilities defined
on the epistemic algebra {generated by the epistemic sets discussed in Section 1I) have the structure of the
basic probability assignments of Dempster-Shafer theory. Furthermore, their associated belief functions (i.e.,
the probability that a given proposition may be known to be true) are related to these mass assignments by
the familiar equations of that theory. Also noteworthy are results assuring that, in the epistemic universe,
probabilities defined on epistemic algebras induce lower and upper probabilities over truth algebras defining
interval bounds that are identical to those derived in the mathematical theory of evidence of Dempster and
Shafer.

Section IV deals with problems associated with combining the knowledge of two rational agents, each
dealing with a distinct (albeit possibly the same) universe of discourse. Structures are introduced to represent
the agents’ state of knowledge before and after the two bodies of knowledge have been combined. The
principal result presented in this section is a general evidence combination formula that is the basis for the
derivation of specific combination formulas, each corresponding to special assumptions about the nature of
the evidential bodies being combined and their relations.

Section V introduces the notion of probabilistic independence. The nature of the structures presented
in the previous sections enables a clearer understanding of this important concept than that found in the
existing literature. A generalization of Dempster's combination formula is derived on the basis of specific
assumptions of independence of certain probabilities.

Finally, Section VI deals with certain simple cases of combination of dependent evidence. The purpose
of discussing them is the presentation of general problems of combination of dependent and conditional
knowledge that are given detailed attention in a related paper [15].



II
THE EPISTEMIC UNIVERSE

This section presents the basic epistemic logic structures used to produce a framework for the represen-
tation of uncertainties discussed in Section III. The basic axioms of epistemic logic are introduced to allow
description of the epistemic universe, i.e., a space of possible states of the real world and of knowledge about
it.

The important notion of necessary implication is used, together with the epistemic concept of accessi-
bility relation, to define important classes of epistemic sets; l.e. subsets of the epistemic universe that are
equivalent with respect the extent of their knowledge. Similarly, subsets of the epistemic universe, called
truth sets, are defined on the basis of their common onteological properties. It will also be proved below that
every possible world in the epistemic universe is associated with a unique sentence that describes the most
specific knowledge of the modeled system that is represented in that possible world.

II-1. Epistemic Logic
II-1-1. Symbols

(1) The special characters © and ¢ are symbols.

(2) Elements of a finite alphabet A are symbols.

IT-1-2, Sentences

Sentences will be denoted by script letters £, 7, G, ¥ {sometimes with a subscript). Sentences are defined
recursively by the following axioms:

(S1) If o is a symbol, then it is a sentence.

(S2) If £, 7 are sentences, soare E A F and £ V 7.
(S38) If £ is a sentence, so is €.

(S4) If £ is a sentence, so is K.

(S5) If £ and 7 are sentences, then £ — ¥ is a sentence.

II-1-3. Objective Sentences

If £ is a sentence that does not include the unary operator K, then £ is said to be an objective senterce,
II-1-4. Truth Values

The truth values are T and F, denoting true and false, respectively.

II-1-5. Sentence Space

The set of all well-formed sentences (henceforth called the sentence space) will be denoted §.



Ruspini Logical Foundations of Evidential Reasoning 5

I1-2. Epistemic Worlds

II-2-1. Interpretations

An interpretation W for § is a mapping from the sentence space § into the set of possible truth values
{T,F}.

A sentence £ is true in W if and only if W maps £ into the truth value T. Otherwise the sentence is
said to be false.
II-2-2. Possible Worlds

An interpretation W is a possible epistemic world (or simply a possible world) for the sentence space §

if and only if it satisfies the following axioms :

(M1) Axioms of ordinary propositional logic with © denoting a sentence that is always
true and ¢ denoting a sentence that is always false.

(M2) If K& is true, then £ is true.

(M3) If K€ is true, then XK is true.

(M4) If K(£ — 7) is true, then K — K7 is true.
(M5) If £ is an axjom, then K¢ is an axiom.

(M6) If ~K¢ is true, then K-K¢ is true.
This axiom schemata is an enhancement (by addition of (M6)) of that originally proposed by Moore [2].
The resulting logical system is equivalent to the modal logic system S5.

II-2-3. Remark

As is well known, the truth of objective sentences in a possible world W is determined by the truth of
sentences consisting of a single symbol by application of the laws of logic [embodied in the above schemata).

The truth of nonobjective sentences, however, while derivable from the truth of other sentences in §,
will not be, in general, a function of the state of knowledge about the truth of simpler propositions (e.g.,
K¢ and K7 may be false, but K(£ v 7) may be true).

II-2-4. Universes
The space of all possible worlds for §, called the universe, will be denoted by U(S§).

I1.3, Necessary Truth

II-3-1. Logical Implication

A sentence £ is said to logically imply a sentence 7, denoted £ = 7, if on the basis the axioms of
episternic logic, without regard to the truth value of other sentences that could be possibly true or possibly
false (i.e, not necessarily true or false), and by the use of rules of deduction, (e.g., modus ponens), ¥ can be
shown to be true whenever £ is true. .

Clearly, if £ is true in a possible world W, then 7 is also true in W. In addition,if £ = 7,then £ — 7
in every possible world W, and conversely.
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Ii-3-2. Semantic Aspects of Logical Implication

The notion of logical implication, introduced above, corresponds to Carnap’s notion of necessary or
L-implication|3, pp. 11 ff.].

Informally speaking, the validity of £ = 7 means that, solely on the basis of the semantical rules of
the system and without reference to extralinguistic facts, the assumed truth of the sentence ¢ is sufficient
to assure the truth of the sentence 7.

If, as Carnap points out, £ 7 7, then, by definition, there exists a possible world where £ is true and
where 7 is false, The truth of 7, therefore, cannot be derived solely from the truth of £ and the semantics
of the system. To establish such truth extralinguistic facts are required (i.e., the truth of other sentences
that are themselves not necessarily true).

The céncept of necessary implication is intended to capture the notion of semantic entailment of one
sentence by the other as an inevitable consequence of axiomatic considerations, rather than resulting from
the mere fact that, in every possible world, whenever the entailing sentence is true, so is the entailed sentence.

It is valid, therefore {as will be done below for problems of knowledge combination), to restrict the scope
of a universe by eliminating from consideration possible worlds in which certain pairs of sentences do not
satisfy some specific entailment conditions. The semantic interpretation of entailment allows the use of this
restriction, which would otherwise be improper (i.e., a possible world is defined in terms of the scope of the
class of possible worlds).

II.3-3. Necessary Implications as Axioms

Throughout this work it will be assumed that, if £ = ¥, then £ — ¥ is an axiom that is true in every
possible world W and, as required by (MS5), it is always known. This requirement is very natural; it restricts
our consideration of possible worlds to those in which both general laws of epistemic logic and specific truths
applicable to certain systems are both assumed to be known.

In what follows, it will be assumed that, if £ = 7, then K(€ — ) is true for every possible world W
{hence K(£ = 7), and K€ = K7). ‘

II-3-4. Logical Equivalence

Two sentences £ and 7 are said to be logically equivalent, denoted by £ < 7, if and only if £ = 7 and
F=€.
II-3-5. Frames of Discernment

The quotient space of the set of objective sentences by the equivalence relation <, will be called a frame
of discernment and will be denoted by $($).

II-4. Epistemic States

II-4-1. Simple Epistemic Equivalence
Two possible worlds W, W, for the sentence space § are said to be epistemically equivalent (denoted
W, ~ W) if, for any objective sentence £, the sentence K& is true in W, if and only if it is also true in Wy.
It can be readily verified that the relation ~ is an equivalence relation among possible worlds for §.
This relation is called the accessibility relation [2].}

II-4-2. Epistemic Space

The quotient space of the set U{$) of all possible worlds for § by the equivalence relation ~ will be
called the epistemic space of § {denoted by X{5)). Its members are called epistemic states.

! This relation is identical to the accessibility relation of modal logic only in the case of equivalence relations. In our case,
this assumption is valid since the underlying modal logic system is equivalent to S5.
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II-5. Most Specific Knowledge

I-5-1. Existence and Uniqueness of Most Specific Knowledge

Theorem (Most Specific Knowledge): There exists an injective mapping M between the space T(S) of
all epistemic states and the frame of discernment ®(S). This mapping assigns a unique (except for logical
equivalences) objective sentence £ = M(e) to every epistemic state e, so that, for every possible world W in
e, and for every objective sentence ¥, the sentence K7 is true in W ifand only if £ = 7 .

Proof: First note that, by definition, epistemically equivalent possible worlds share a common set of
objectivé sentences ¥ such that K7 is true. Proof of the existence of a sentence satisfying the theoremn thesis
for a possible world W in the epistemic set e is therefore equivalent to its proof for any other possible world
W' in e such that W' ~ W. Furthermore, such a sentence should be the same for all epistemically equivalent
possible worlds.

To see that such a sentence exists, consider any possible world W in e and let

{A, %2,...}
be the set of all objective séntences 7 in W such that K ¥ is true. Let
E=RHAARA...

Then € is also objective and, by virtue of the axioms of propositional logic (relating truth values of conjuncts
with that of their conjunction), if £ is true in any possible world W, then so is %, ¢ = 1, 2,.... Therefore,
by construction, if K7 is true in W, then £ = 7. In particular, since £ = &, K& is true in W.

Conversely, if £ = 7, then, since K({ — 7), it follows from (M4) that K7 is true in W.

In addition, if e and e’ are two epistemic spaces such that M(e) = M(e') = £, then any two possible
worlds in € or €' share the same set of true sentences of the form K7 where 7 is objective {i.e. those that
satisfy £ == 7). Therefore those two worlds belong to the same epistemic space.

" To prove that the mapping is unique, assume that £ and £ are two sentences that satisfy (for a
possible world W) the thesis of the theorem. Then & A & is objective and true and, by virtue of the
assumed properties of £, and &5, it follows that & = (£, A €2) and & = (&) A £2) are both true. But then,
since (& A &) = £y and (€1 A &) = &, it follows that £, and £, are logically equivalent.

This completes the proof of the theorem.X
II-5-2. Epistemic Mapping

If £ = M(e), then £ is said to be the most specific objective sentence known in e. By abuse of language
we shall also use the notation M to associate every possible world with the most specific objective sentence
known in that possible world.

Conversely, e[£) will denote the epistemic set containing all the possible worlds that have as their
most specific knowledge the objective sentence £. Clearly, e is the inverse of M, mapping classes of logically
equivalent objective sentences (i.e., #(5)) into classes of epistemically equivalent possible worlds (i.e., £(5)).

It is important to note, however, that some epistemic sets may be empty. For example, since the senteuce
¢ Is false in every possible world, the epistemic set e(¢) does not contain a possible world.

II.5-3. Generalizations of the Most Specific Knowledge Theorem

Note that, although the theorem proved above was concerned with the existence of most specific objective
sentences, the arguments used are applicable to any class of sentences that is closed under logical conjunction.
Moreover, in any possible world there always exists a most specific known sentence (i.e., the conjunction of
all sentences, whether objective or not, that are known to be true). Similar generalizations will be invoked
in the rest of this paper involving, in each case, collections of subsets of the universe that are closed under
set intersection.
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JI-6. Special Subsets of the Epistemic Universe

II-6-1. Truth and Support Sets

The set of all possible worlds in ¥(S) that map the objective sentence £ into the truth value T, called
the truth set of &, will be denoted by t(£).

The set of all possible worlds in U (S) that map the sentence K&, for £ in ®(S), into the truth value T
will be denoted by k(£). This set will be called the support set of £.

I1.6-2. Relations between Epistemic and Support Sets

Theorem: Let £ be a sentence in the frame of discernment $(S). Then

k(€)= | (),

F=£

where the union is over sentences ¥ in ®(S) such that ¥ = €.

Proof: By virtue of the theorem proved above, if W is a possible world and K¢ is true in W, then
there exists an objective sentence ¥, ¥ = &, such that W belongs to e(7).

Conversely, if ¥ is objective and 7 = £ (treatment of necessary implications as axioms), then K¢ is
truell

Theorem: Let ¥ be a sentence in the frame of discernment &($). Then

o7) =x(7)n | U 5@,

k(F) = | e(f),
E#AF

k(7) = |J k(€).
ERF

Proof: The first relation follows at once from the definition of epistemic set and the most specific
knowledge theorem.

The second relation is a direct consequence of the theorem proved immediately above.

Finally, if K7 is true, then by the most specific knowledge theorem, K¢ is true for some objective
sentence £ = 7. The converse of this statement is obviously true. It follows, therefore, that

k(F) = |J k(€).

£E=F

Taking the complement on both sides, the third relation follows at once.ll



III
PROBABILITIES IN THE EPISTEMIC UNIVERSE

This section introduces probabilities as functions defined over certain special families of subsets of the
epistemic universe. These collections have certain important algebraic properties that allow derivation of
the probabilities of certain sets as a function of probabilities of other sets in the family. The collection
of epistemic sets introduced in the preceding section is shown to have the structure of a subset algebra
and probabilities over such a collection are shown to possess the properties of the basic functions of the
Dempster-Shafer theory: belief functions and basic probability assignments.

To study problems associated with the extension of a probabilities defined on a subset algebra to another
subset algebra containing it (i.e., a richer subset collection}, the conventional probability concepts of lower
and upper probabilities are introduced. Belief functions are shown to be the lower probabilities induced in the
truth algebra (consisting of sets with similar ontological properties) by a probability defined in the epistemic
algebra. These bounds are shown to be attained and therefore to be the best possible. Lower probabilities
are further discussed in terms of their more general role as solutions to a wide variety of evidential problems.
These results confirm the interpretation of belief measurements advanced by Suppes in 1974 [5}2.

The important concept of conditional probability is also introduced in this section.

ITI-1. Probability Measures

III-1-1. Subset Algebras

A subset® algebra {1 in the set X is a collection of subsets of X that includes its empty set, X itself,
and that is closed under set complementation, union, and intersection.

A subset algebra (1) is said to be a subalgebra of another subset algebra {1, if and only if 1) C Q12 as
collections of subsets of X.

III-1-2. Special Algebras in the Epistemic Universe

Four subset algebras in U{(§) are of particular interest:
(1) The trivial subset algebra of U/($), consisting solely of {(5) and its empty set.

(2) The subset algebra #(1/(S)) 4, identical to the power set of ¥(S$), called the possible
worlds algebra of U{S5).

(3) The subset algebra {1g, called the epistemic algebra of U{(5), equal to the smallest
subset algebra containing the class of the support sets k(£), where £ is in the frame
of discernment $(S) {Note, that by virtue of the relations between epistemic and
support sets proved above, the nonempty members of {Ig are unions of collections
of epistemic sets e(7), where 7 is in the frame of discernment &(S).).

2 1t js important to note that these results support Suppes' interpretation of lower and upper probabilities as the major
constraints on probabilities over richer subset algebras, i.e., as opposed to the arbitrary interval constraints of interval
probability theory. The resulting bounds agree with those derived in the Dempster-Shafer theory only when the inducing
probabilities are defined on certain subset algebras, e.g., the epistemic algebra.

3 For simplicity, we shall restrict our attention to finite sets. Extension to arbitrary spaces requires introduction of the
concept of sigma algebra (see, for example, Halmos [10]).

4 In general, the notation #{X) (or simply #) will be used to denote the power set of 2 set X.

9
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(4) The subset algebra Q, called the truth algebra of U(S§), consisting of the class of
the truth sets t(£), where £ is in the frame of discernment $(§).

III-1-3. Probability Functions

A probability defined on the subset algebra Q of a set X is a mapping P from Q2 into the [0, 1] interval
of the real line, that satisfies the following conditions

(1) P@) =0,
(2) P(X) =1,

(3) P{w; Uwz) + Plw; Nwz) = Pw1) + P{wz), whenever w;,wy are in 1.

The triple (X, Q,P) is called a probability space.

ITl-1-4. Consistent Probabilities

Let Py and P2 be probabilities defined on the subset algebras {1, and (13, respectively, of a set X. Then
P, and P, are said to be consistent if there exists a probability function P, defined in the smallest subset
algebra (1 that includes both £1; and 3, such that

_ | Py(w), fwisinOy;
P(w)_{Pg(w), if w is in Qa.

II-2. Lower and Upper Probabilities

II1-2-1. Kernel Sets for a Subset Algebra
Let 2 be a subset algebra of the set X. Then the kernel of #(X) in {1 is the mapping

Kg:P(X)— 0

that assigns to every subset w of X the largest member of {1 contained in w (the proof of the existence of
such a set is well known and will be omitted here).
For any subset w in #, the subset Kp{w) will be called the kernel of w in Q.

II1-2-2. Kernel of a Truth Set in the Epistemic Algebra

Theorem: The kernel in Qg of the truth set t(&) in U(S) is the support set k(& ).
Proof: H K& (£ objective) is true in W then, by virtue of (M2), £ is true and k(&) C t(£). Now let
7 be an objective sentence such that

e(F) Ct(€).

Since the sentence

KFA (Ar ﬂKg),
24

is true in W if and only if W is in the epistemic set e¥), it follows that

K.‘r"/\(/\ ﬂKg)=>cﬁ

S=T
ST
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But then, by virtue of the axiom (M4), it follows that

K(K?A ( A ﬂKg)j = K¢

5=r
S#&F

Distributing the epistemic operator K in the left-hand-side by application of the axioms (M3}, (M5),
and (MS6), it follows that

K7 A ( /\ ﬂKg) =2 K¢,
E=r
ST
or that

e(7) Ck(£).

Since each epistemic subset that is a subset of t(&) is also a subset of k(&), and since any member of the
epistemic algebra is a union of (disjoint) epistemic sets, it follows that k(&) is the largest member of the
epistemic algebra that is a subset of t(£).1

III-2-3. Lower Probabilities
Given a probability function P defined on the subset algebra {1 of a set X, the function

P. : £(X) - [0,1]: & > P(Ka(w))
is called the lower probability induced by P in P[X).
III-2-4. Upper Probabilities
Given a probability P defined on the subset algebra {1 of the set X, the function
P :p(X)—[0,1]:wr— 1 - P.(w)

is called the upper probability induced by P in ®(X).

The notion of upper probability is related to the concept of a cover set through a relationship that is
the dual of that between lower probabilities and kernel sets.

Let € be a subset algebra of the set X. The cover of #(x) in {1 is the mapping

C:p(X) = 0

that assigns to every subset w of X the smallest member of {2 that contains w. The subset C{w) is called the
cover of w in ).

The proof of the existence of a cover and the proof that
P (w) = P(C(w))
are well known.

ITI-2-5. Relations Between Probabilities and Lower Probabilities

Let Py and P2 be two consistent probabilities defined on the subset algebras {1 and {)a, respectively, of
a set X. Further, let 2 C ;. Also, let K, and P, be the kernel of #(X) in ; 2nd the lower probability
induced by P; respectively. Then, since Kq,(w) € w for any w in ®(X) [(hence, for any w in {1}, it is

P1.{w) = P1(Kn, (w)) <Py(w) = Pa(w).
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III-2-6. Lower Probabilities as Best Bounds

The following results show that the bounds provided by the relations between lower probabilities and
consistent probabilities cannot be improved.
Theorem: Let P be a probability defined on the subset algebra (1 of the universe U($).
If T ={wi,wa,...,wn} is a finite collection of subsets of U{8), then there exists a probability P in {1,
the smallest subset algebra containing both (1 and T, such that
f’(wl) =P.(w1),
ﬁ(w;) >P.(w), 1=2,...,n,
P(w) > P(w), forallwin.
Proof: Let {1; be the smallest subset algebra containing w; and .
Define the subsets « and v of ¥(§) as follows:

K= Kn(wl),

v=w; N E,
and define a set function f’l over the following members of {1, as follows:

f’l(w)=0, ifwCw,
Pi(w) =Pwn«), ifwCxk,

Pilw) = EﬁP(UL fwnw, =49,

where, in the last line, the maximum is defined over the collection of sets
Aw)={cinQ:0Nk=10; o'hw_1=wﬁw—1}_

The function f‘l is then defined over other subsets in {2; by additivity (note that the above equations define

f’l separately over the sets x, v, and w7).
Then, clearly, P, (@) = 0, while

Bau(s) =Px) + gﬁp(a) =P(x) + P(R) = 1.

Note also that f’l is additive over subsets of k in {l;, as these are also in {1, and f’l = P for such
subsets. Further, Py is additive over subsets of v in {1; since it is equal to zero for all such subsets.
If now x1 and yo are disjoint members of {13, both fully contained in &y, then

p P = . 111,
Pi(x1)+ Py(x2) Lr\n(;ch)P(U)+gE§:¢}P(U) (IIL.1)

Assume that the maximum values on the right-hand side of the above equation are attained for o1 and o,
respectively, both nonintersecting with «.
Then it must be g3 N oy = §. Otherwise, since

oyNoyNwy=x1Nxz Ny =8,
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it must be
gyNogNu=c;Nog #0.

However, since both o, and o2 are in {1, then o1 Moy, a subset of v and therefore of wy, is also in {2. Then,
by the definition of kernel, it must be

g,Noz C K,

contradicting the assumptions made about both oy and oa.
Returning now to Equation III.1, it follows that

P1(x1) + Pi(xz) = Plow) + P(o2)

=P(o1Uo?)
< A(T;II?-J?;’)P(U) (111.2)
=P(x1 Ux2).
Since, on the other hand, it is obvious that
A(Tj_:’;,)P(U) < 2}2}1()13(0) + g}i.:;c)P[a') , {IIL.3}

then combination of the inequalities III.2 and IIL3 yields the equation

1’51()(1) + 1'51()(2) = 1'51()(1 Uxz),

completing the proof that the set function 131 is a probability on 1,.

Furthermore,

Pi(w)) =Pi(wi Nk) +P1(v) =Py(x) = Pufwn]),

by the definition of lower probability.

If now w C &, then, by definition, f’l(w) = P(w). Otherwise, if w is in 2, w € &, then

Piw) =Piwna) +Pilwnv) + P1{wnk) > Pwn®) + Plwnk) = Plw).

It is also clear from this relation that

Bl.(w) > P,(w), forallwin #(U(S)).

If the above probability extension process is repeated inductively for 1 = 2,3,..., n replacing P by 1’5,-_1
and letting {}; be the smallest subset algebra containing both @;_, and w;, then P, = Pisa probability
defined on {1, the smallest subset algebra containing both @ and T. Further, P{w,) = P.(w1).A

Corollary: Let P, {1, ﬁ, and T be defined as before. Then there exists a probability ' such that

Plw)) =a,
P'(w) 2 P.(w), forallwin i,
where a is an arbitrary value between P.(w,) and 1 — P.(&1).
Proof: Through the same construction process used in the preceding theorem, it is possible to extend
the probability function P to a probability P defined over {1 such that
P(ar) =P.(w1).

The corollary follows immediately by consideration of convex combinations of the probability functions
P and P, both defined on the subset algebra {1.1
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II1-2-7. Conditional Probabilities

Let P be a probability defined on the subset algebra {1 of the set X. Let o be an arbitrary subset of X
such that P{c} > 0. The function
Plwno)
P(W/U) = W—

is called the conditional probability of P with respect to a.

I11-3. Probabilities on the Epistemic Algebra

III-3-1. Basic Probability Assignments

Let P be a probability function defined on the epistemic algebra Qg of the universe U#(S). Then P
is said to be a basic probability assignment on U($). By abuse of language we shsll also say that P is a
probability defined on the associated epistemic space Z(S).

From the definitions of probability on #(S), the subset algebra {1g, and the disjointness of epistemic

states, it is clear that > Ple) =1.
- [1p>

II1.3-2. Probability Masses

The fanction m : ®(S) + [0,1], defined by m(€) = P(e(£)), is called the probability mass associated
with P in ®(S5).

It is clear that ), m(&) = 1.
fed

III-3-3. Support and Plausibility

Let S be a function mapping objective sentences in the frame of discernment &($) to real numbers in
the |0, 1] interval, defined by

S(&)=P({we U(S): Kf‘true in W}) =P(k(£)).

The real function S is said to be the support function® in ®($) associated with the basic probability
assignment P.
Correspondingly, the function Pl defined by

PL:®(S)—[0,1]: £ — 1 5(=€)
is said to be the plausibility function in ®(8§) associated with the basic probability assignment P, Clearly,
PI(£) = 1 - P(-k(£))
is the upper probability function in ®(U[$)) associated with P.
I11.3-4. Relation between Supports and Probability Masses
From the definitions of support and plausibility functions, it follows at once that

5(&)= ) m(7),

F=E

P& = > m(F).

Fa=E

5 These functions are called belief functions in [Shafer, 7). The term support is used throughout this work as it expresses
the meaning of the function § more adequately.
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III.3-5. Supports as Lower Probabilities
It was seen earlier that the kernel in the subset algebra {1g of the truth-set t(¢) is the set

k(€)= ] e(7).

F=£

By virtue of the relation between lower probabilities and probabilities, it is clear that, if P is a probability
defined on the subset algebra (g of the universe U(S$), then

S(€) = 3 m(7) = 3 P(e(7)) = P(k(€)) = P.(t(£)) < P(8(£)).
F=£ F=£

Supports are, therefore, lower bounds for the probabilities of certain sets of possible worlds in which a
given objective sentence is true. Consistency between probabilities defined on the epistemic algebra {ig and
on the truth algebra (I requires that probabilities over the latter and support functions over the former
satisfy certain inequality constraints.

Similarly, it may be seen that plausibility functions are upper bounds for probabilities defined on the
truth set algebra {ir.

By using the theorem proved above regarding the nature of lower probabilities as sharp bounds for
consistent probabilities, it can be seen that the bounds for P in terms of the support function S cannot
be improved (simply consider 2 = {Jg and T = QY in the statement of the theorem of section III-2-6}. It
follows, therefore, that it is possible to construct a probability P that for the truth set t(¢), may attain any
value satisfying

S(€) < P(t(€)) < PI(€).

III-3-6. On the Role of Lower Probabilities

The results just derived show the importance of the concepts of lower and upper probabilities in evi-
dential reasoning. Beyond the validation of support and plausibility functions as bounds on the values of
the probability of a truth set, lower and upper probabilities play a central role in most evidential reasoning
problems,

The treatment of these problems follows a general two-step scheme. The first step is the translation of
evidential observations into a number of consistent probabilities defined over some epistemic universe. The
second step consists of the extension of these probabilities to some subset algebra of interest, usually the
smallest subset algebra containing those subset algebras identified in the first step. This extension identifies
possible values of any probability function defined over the richer subset algebra. The best characterization
of possible values, as shown above, is provided by the upper and lower probability functions.

III-3-7. Perfect Probabilistic Information

Note that, in conditions of perfect probabilistic information, i.e. £ — K¢ in U(S), support sets are
identical to the truth sets; moreover, the epistemic universe is the same as the Carnapian universe. In these
cases, the interval [S(), PI{£)] collapses to a single point and, as is well known, the results provided by
the Dempster-Shafer theory are identical to those obtained by the direct application of probability theory to
probability functions defined over the truth algebra (which are now known due to the assumed characteristics
of the information).
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III-3-8. Certain Support Functions
If a support function S in ®(§) is associated with an epistemic probability P such that

m{€) = Ple(é)) =1,
then § is said to be a certain support function focused on €. It is clear that

1, #f€=>7F,
§(7) = {0, otherwise,

ITI-3-9. Mébius Inversion Formula

In the ensuing discussion there will be several opportunities to use the following theorem |7, 8], which
1s a special form of a basic result of combinatorial theory (M6bius inversions), which was studied in detail
by G.C. Rota|18].

Theorem: Let {1 be a finite subset algebra of a set U. Assume that there exist real functions f and g,
defined on Q, such that '

g(z) = Z fly), for all z of 2.

vC=z

Then it is
flz) = Z (—1)lv=2lg(y), for all z of {2,

yCe

where |y — z| is the number of elements z of (1 such that z C z Cy.

ITI-3-10. Shafer Axioms and Relations

Applying the basic result on Mébius inversions to the epistemic algebra {3, the basic formula expressing
probability masses in terms of support functions [7] can be readily derived:

m(€) = 5 (-1)l¥-7ls(7), (111.4)
=<

where | — 7| is the number of elements § in $(§) such that £ = § = 7.
By utilizing related results from combinatorial theory, it is possible to derive the following inequality,
which Shafer uses as an axiom for support functions:

S(ev-vé)z Y (-yliiHts ( A &-) : (111.5)

1C{1,---,n} el
I#a

where |I| is the cardinality of the index subset I.
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Ii1-3-11. Evidence as Conditional Probabiliiies

If the sentence space is rich enough to include propositions that describe not only the results of the anal-
ysis of evidential observations and measurements, but the actual observations and measurements themselves,
then the probabilistic representation of a body of evidence may be thought of as the conditionalization of an
epistemic probability with respect to a support set k(£}. The proposition £ represents the actual observations
and measurements which are assumed known with certainty.

This interpretation assumes that, through appropriate extension of the universe of discourse, it is possible
to represent conditioning with respect to uncertain evidence as classical conditional probabilities with respect
to sets that represent certain evidence. The validity of this assumption has been discussed by Kyburg[19).

In the rest of this work, the simplified notation P(-/£) will be used as shorthand for P (- /k(£)}. In
addition, in the rest of this paper, the Greek letter & will be used to denote evidential bodies and their
associated sets.

The formal impact of evidential observations or measurements may be thought of, therefore, as the
replacement of an epistemic probability P by the result

P(/€) = P(/K(¢)),

of its conditioning with respect to the support set k(£). The result of the integration of successive bodies
of evidence £, &, ... results in the computation {through knowledge combination formulas) of the values of

the probability functions P(-/£1), P(- /&1, &2),...P(- /&, ¢2,...).
1I1-3-12. Semantics of Evidential Reasoning

The epistemological basis of evidential reasoning lies in its interpretation of observations of the real
world as equivalent to certain probabilities that are defined on the epistemic algebra Qg.

According to this view, the informational content of evidence permits more than simple diserimination
between possible and impossible states of the world as dependent upon their logical or physical consistency
with available observations. Either from past experience, which furnishes the rationale for objective estimates,
or from rational considerations, resulting in a consistent belief system leading to subjective estimates, the
information provided by evidence allows qualification or quantification of the likelihood of certain propositions
given the observed facts.

The evidential approach equates knowledge of the truth of certain propositions with availability of
observations supporting that validity. This relation between the concepts of knowledge and confirming
evidence is supported by the etymology of words in the epistemological lore. The word evidence is related
to the Latin verb vidére, “to see”, itself cognate with the Greek idein {from the earlier Greek widein),
and the Sanskrit vid, “to know” [16]. The term evident literally means “making itself seen” [17]. Asserting
that a proposition is known can be thought therefore as declaring the existence of supporting evidence.
Whenever such evidence, however, is uncertain or inconclusive, such assertion may be qualified by means of a
probabilistic statement. This statement measures the extent by which the observer relies in his measurements
and observations as true grounds supporting the knowledge of propositional truth.

Unlike certain classical approaches that assume that experimental data or rational considerations always
enable relative quantification of the degree of support accorded by evidence for every relevant proposition,
the viewpoint expressed here is that evidence, by its very nature, provides information only about the truth
of certain propositions, while failing to furnish any indication, either relative or absolute, about the truth or
falsity of others. In this approacl, valuations (i.e., measures of relative evidential support) can be regarded
both as assessments of the relative likelithood of certain statements as true descriptors of the real world and
as measures of the resolving power of evidential bodies. Consequently, an assignment of a null value to the
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probability of an epistemic set simply states that the evidence does not support the truth of a proposition,
rather than indicating explicitly that the proposition is false.

If, for example, a purely objective and frequentist interpretation of probability is considered, the value
of a probability over an epistemic set measures how often, in past experience, acquisition of this type of
evidence has resulted in knowledge that a proposition (but not any other proposition that implies it) was
true.

For example, if, at the scene of a crime, a lock of hair is found, having a certain color and other physical
properties, such evidence may indicate that the criminal is in.a class of individuals specified by hair attributes.
Furthermore, errors involved in collecting evidence, analyzing it, or interpreting the analysis may introduce
uncertainties about the nature of this class, resulting in the specification of likelihoods for different classes
of suspects. This distribution, however, should reflect the fact that the original evidence failed to resolve
the identity of specific suspects — an informational deficiency that some approaches erroneously interpret
as equal likelihood. These interpretations of evidence assume incorrectly that bodies of evidence are capable
of defining a probability distribution over the universe of possible, objective worlds; i.e., over alternative
states of nature that are otherwise incapable of being discriminated by the informational content. In the
evidential interpretation, such capability is restricted to certain subset algebras, i.e. those having as atoms
subsets which may be distinguished by the evidence.

Finally, this interpretation properly recognizes that evidence changes not the state of the world but
rather the state of knowledge about it. The acquisition of evidence should, therefore, lead to changes in the
formal structures that are used to represent knowledge states.



v
THE COMBINATION OF KNOWLEDGE

This section is devoted to the discussion of the problems associated with integrating the knowledge of
two distinct, mutually trusting agents. .

Two important spaces are introduced: the first is simply the Cartesian product of the two universes
being combined, representing possible states of knowledge that each agent may possess solely by virtue of
the evidence available to him; the second, called the logical product universe, represents the possible results
of this combination. '

Epistemic algebras and probabilities defined on them are then related to arrive at the additive com-
bination theorem, a general result that serves as a basis for deriving a variety of evidence combination

formulas.

IV-1. Multiple Epistemic Agents

IV-1-1. Multiple Worlds

Throughout the rest of this work we shall be considering more than one universe (), each satisfying
the axioms of epistemic logic. Each universe may be based on different symbol alphabets A1, A2,.... In
general, therefore, different universes will contain possible worlds that map different sentence spaces into the
set of truth values {T, F}.

Different universes and their associated structures (i.e., epistemic spaces, most specific mappings, frames
of discernment, etc.) will be differentiated by the use of numeric subscripts, e.g. U{$;), and &($;}).

IV-1-2. Muitiple Agents

Subscripts will also be used, whenever necessary, to differentiate unary epistemic operators, e.g. K;, K.

Different operators will usually be interpreted as representing the knowledge of different, rational, and
mutually trusting agents that are combining their knowledge to arrive at a consensual agreement (usually
represented by an unsubscripted epistemic operator K).

Throughout this section we consider the problems that arise when of the knowledge of two mutually
trusting rational agents is combined.

IV-2. Product Spaces and Universes

IV-2-1. Product of Sentence Spaces

Let §; and S» be two sentence spaces. The logical product §; ® §2 of §; and §; (or product, for short)
is the space of all sentences defined by the axioms:

(PS1) If £ is an objective sentence in §;, forz = 1 or 2, then £ is a sentence in the product
space §) ® Sa.

(PS2) Axioms (82) — (85), given in section II-1-2, defining well-formed epistemic sen-
tences.

19



Ruspini Logical Foundetions of Evidentiacl Reasoning 20

IV-2-2. Possible Worlds in Product Space

A possible world in the product sentence space §; @ §3 is 2 mapping from that space into the truth set
{T,F} that satisfies the following axioms:

(PU1) The possible world W satisfies the axiom schemata (M).

(PU2) If € is a sentence in §; ® Sz, then the sentence K¢ is true in the possible world W
if and only if there exist sentences £; and € in §; and S», respectively, such that
K¢ is true in W and &1 A &5 = £,

IV-2-3. Remarks

It is important to note that the notion of possible worlds in a product space is not only well defined,
but also captures the notion of combination of the knowledge of two evidential bodies.

Axiom (PUZ2) restricts the scope of possible worlds by requiring that propositions known to be true in
a possible world in the product space be either sentences in the spaces being combined that are known to
be true in that world; or logical consequences (i.e., necessary or semantic entailments) of the truth of those
propositions.

The correctness of this type of axiom was noted above in section II-3-2 when discussing the semantic
aspects of logical implication.

IV-2-4. Product of Universes

The set of all possible worlds over the product sentence §; ® S, that satisfy the axiom schemata (PU)
will be called the Jogical product universe over §1® S2 (or product universe, for short}, denoted Ug (51 @ 52).
IV.2_5. Product of Frames of Discernment

The product of two frames of discernment ®(§;) and &(S2) is the frame of discernment #(5; ® Sa),
equal to the quotient set of the objective sentences of §) ® Sz by the equivalence relation < in Ug(S ® §2).

IV-2-6. Remarks

Note that, by construction, the symbols in the product space S; ® Sz are those that represent sentences
that are in either §; in 83 with the unary operators K, and K; replaced by K.

Furthermore, also by construction, the truth of objective sentences in a possible world W in Ug (51 ® S2)
is determined by the truth of sentences that are either in ®($;) or in $(82). If £ is a sentence that does not
include the epistemic operator K, then £ is true in W if and only there exist sentences £; in § and &5 in
Sz such that £, A&y = €.

IV.2-7. Cartesian Projection
The mapping II, defined by the expression

TL: Ug(S1 ® Sa) — U(S1) x U(S2) : W (W1, Wa),

where W; (z = 1, 2) is the unique possible world in Y(5;) defined by the conditions
(1) The sentence £ in ®($;) is true in W; if and only if £ is true in W,
(2) The sentence K;&, with € in ®(§;), is true in W; if and only if the sentence K¢ is

true in W,

is called the Cartesian projection of Ug (S ® S2).
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Proposition: The Cartesian projection of Ug (S ® S2) is an injective mapping.
Proof: As noted above, the truth of objective sentences in W is determined by the truth of objective
" sentences in & or in &s.

Furthermore, if a sentence is of the form K¢, where £ is objective, its truth is also determined {because
of the axiom (PU2)) by the truth of sentences of the form K7, where 7 is in either ®(§;) or ®($z).

Finally, the truth of every other sentence in §; ® Sz is determined by the truth of sentences in the above
classes.

Therefore, if two possible worlds in Ug (5, ® 52) assign the same truth values to sentences in §; and $z,
then they assign the same truth values to all sentences; in other words, they are identical.R

IV-3. Epistemic Sets in the Product Universe

IV-3-1. Marginal Support Sets

The marginal support set in g (S) ® S2) for the sentence & in &(S;), denoted by k;(£&), is the set of
all possible worlds W in Ug($1 ® $§2) such that K¢ is true in W, (i =1, 2).

IV-3-2. Marginal Epistemic Sets
The marginal epistemic set in Ug(S; ® S2) for the sentence & in B(S;), (£ = 1, 2), denoted by &(&;);
is the set of all possible worlds W in Ug (S, ® S2) such that £ is the most specific sentence in ®(5;) that is

known true in W. The existence of this sentence is proved in the same manner as before (section II-5).
It is clear from the definitions and the basic theorem relating epistemic and support sets that

1;.‘(5) = U &(7F), 2=1,2,
F={
where the union in the above formula is over marginal epistemic sets &;(7) such that 7 is in ®(S$;) and
F=£. _
Note also that, since there is always a sentence & in ®(S5;), 7 = 1, 2, such that K¢ is true (e.g.,
& = ©;), then every possible world in Ug(§) ® S2) belongs to some marginal epistemic set &(£), i =1, 2.

IV-3-3. The Basic Combination Theorem

Lemma : Let £ be a sentence in ®(5; @ §;). If e(£) is nonvoid, then there exist sentences £ and &3
in ®(81) and ®(S2), respectively, such that £ < £ A €2,

Proof: Let W be in the nonvoid epistemic set e(£). Since K¢ is true in W, then, by virtue of (PUZ2)
there exist sentences €) and €3 in §; and Sz, respectively, such that £ A £ = £ and K(&) A £3) is true in
W,

But then, by the definition of epistemic set, 1t must be £ = £} A € and, since also €3 A & = €, it
follows that £ A&y & £ 1

Corollary: There exists a mapping

that assigns to every sentence £ in ®(S) @ 52) a subset of sentence pairs (€1, €2) with & in ®(5;), 1 =1, 2,
such that £, A€, & € in 7.1@(51 @ 52)
Further, if £ ¢ €', then
T(E)NT(E) =40.

Proof: The existence of the mapping T for sentences £ such that e(£) is nonvoid follows directly from
the lemma. The definition of T' is completed by defining T'(£) = # whenever e(&) = §.
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I T(£)NT(E') # 0, then there exist, by virtue of the lemma, a possible world W in Ug(5; ® 82) and
sentences &3 and €z in §; and S, respectively, such that K{£; A &) is true in W and

EaEANE & &,

It is thus clear that T'(£) =T (')A
The mapping T'{€) will be called the compatibility relation of (8§, ® S2).

Theorem (Basic Combination Theorem): Let £ be an objective sentence in the product frame of
discernment $(S, @ S2). Then
e(€) = | [a1(&1) n&(&2)], (IV.1)
r(€)
where the union is over all pairs (€, £2) in ®[8;) x ®{S2) such that (£, &) is in T'(€£).

Proof: If ¢[£) is empty, then I'(£) is empty and the theorem follows at once.

Otherwise, let W be in e(&). Then since every possible world is in some marginal epistemic set &{&;),
1 = 1,2, it follows that there exist sentences &), &z in ®(85,;) and ®(S;), respectively, such that W is in
él(fl) N ég(fg)

Now, by virtue of the lemma, there exist sentences 7; and % in §) and S, respectively, such that
£ & A A 7. Further, both K&, and K &g are true in W.

By the definition of marginal epistemic set it follows that & = 7, 7 = 1, 2, and therefore £ A & =
1N T ¢ £, Since W, on the other hand, is in e(£), and since K(£; A £3) is true in W, it follows that
£ = &, A €2 and therefore

61 A 62 & €.

Now let W be in &,(£;) N &,(&3), such that £, and £, are in §; and Sy, respectively, and £ & & A £o.

Then, since K¢ is true in W, it follows that K7 is true whenever £ = 7.

If, on the other hand, K7 is true in W, then by virtue of the axiom (PUZ2), there exist sentences 7
and % in §; and Sz, respectively, such that K7 and K% are both true in W and # A 72 = 7. However,
since W is in &,(£1) and in &;(¢&2), it follows that

Ei=>fHand &= Fa.
Therefore, itis & S &A= A AR =7

IV-4. Marginal and Product Epistemic Algebras

IV-4-1. Marginal Epistemic Algebras

The smallest algebra in U g {5, ® S52) that contains the marginal epistemic sets &;(£) for £ in ®(§;),for ¢ =
1 or 2, will be called the marginal epistemic algebra for ®($;), denoted by Q%(Ug).

IV-4-2. Product Epistemic Algebra in the Product Universe

The smallest subset algebra of Ug (81 ® §2) that contains the marginal epistemic algebras 2L (l/g) and
0% (Ug) is called the product epistemic algebra of Ug(S1 ® S2), denoted by Oe(ls).

Clearly, this subset algebra contains all the sets of the form &,(£;) N&z(£2), and therefore, by virtue of
the basic combination theorem, all epistemic sets e(£).

Note, however, that the product epistemic algebra ﬁE(U@) contains, in general, the epistemic algebra
Og(lg) of Ug(S1 ® S2). The atoms of the latter, as shown by the basic combination theorem, are unions of
atoms of the former.
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IV-4-3. Special Subset Algebras in U(51) x U(S2)
Let &, (&) and &;(£2) denote the subsets of ¥ (8;) x U(S;) defined by the expressions

(-31(51) = 81(51) X U{Sz),
82(&2) = U(S51) x e2(&2},

for £y in ®(5;) and & in B(S2).
The marginal epistemic algebras O} (U x) and Q% (Ux) are the smallest subset algebras of ¥(S;) x U{S2)
that contain the collections of subsets

{8:1(&1) : &1 isin B(81)}, {&2(&2) : E2isin B(S2)},

respectively.

The product epistemic algebra Qg{lx) is the smallest subset algebra of U(51) x ¥($2) that contains the
marginal epistemic algebras 2, and 0%. Once again, we must note that this algebra contains, in general,
the algebra generated by the projections by the mapping IT of the epistemic sets e(£) in Ug (51 ® S2)-

1V-4-4. Epistemic Sets in the Cartesian Product U{S:1) x U(S2)

By abuse of language, the term marginal epistemic sets (in U(51) x U(S2)) will be used to describe sets
of the type &,(£1) and &2(&;), with &; in ®(5;) and &> in ®(S2). The corresponding support sets will be
similarly referred to as marginal support sets.

The term product epistemic sets (in U (S1) x U{S2)) will be used to describe those subsets of U($1)x U{52)
that are in the subset algebra generated by sets of the form

él(&) 062(52) = el(&) X 82(52), £y in @(51), 52 in @(52)

IV-5. Probabilities in the Product Universe
IV-5-1. Relations between Compatibility Mappings and Cartesian Projections

Theorem: Let £ be an objective sentence in § such that the epistemic set (&) is nonvoid in Ug (51® 52).

IfW is a possible world in Ug (8, ® S2), then there exists a pair (&1, &2) in T'(£) such that the Cartesian
projection (W1, W) of W is in the subset e;(€1) X ex2(&2) of U(S1) x U(S2)

Further, if (W1, Wa) is in e;(&1) % e2(&2), (€1, &2) in TI(E), then there exists a unique world W in
UQ(S_[ ® 52) such that H(W) = (Wl, WQ)

Proof: By the definition of Cartesian projection, a sentence K;&, with £ in ®(5;)7 = 1, 2, is true in
the world Wi in U(5:) if and only if K£ is true in W.

Therefore II maps worlds in &;(¢&;) into pairs of worlds in &(£), ¢ =1, 2.

Since every world W in e(£) is a set intersection of the form & (1) N &(&2) for some pair (&1, &) in
T'(£), it follows at once that II maps W into the Cartesian product

er(£1) x e(£2) = &1(£1) N&2(E2).

Conversely, if (W1, Wa) is in e1(€1) x e2(&2), {&1,&2) in T'(£), then, as proved above, there exists a
unique possible world W in Ug (S; ® S2), mapped by II into (W;, Wa). Further, W is in e(£; A &) = (€)1
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Corollary: The mapping Il defines a one-to-one transformation between Ug($1 ® S2) and a subset Ilg
of the Cartestan product U(S) x U(Sz) such that

{i} The images of the marginal epistemic algebras QL (Ug) of Ug(5) ® S2) by II are
subalgebras of the marginal epistemic algebras NG (Ux) of U(81) x U(S2).

{ii) The image of the epistemic algebra Qp{llg) of Ug(S) ® S2) is a subalgebra of the
product epistemic algebra Qp(l/x) of U(S1) X U(Sz).

{ili) The image Ilg of Ug (S ® S2) by II is the union of seis of the type e; (£1) X e2(&2)
with £, and &2 in ®(S,) and ®(S2), respectively.

Proof: The first and second parts of the corollary follow immediately from the theorem.
To prove the third part, it is sufficient to observe that, if Ilg intersects a set of the type e;(£1) X e2(&2),
then it includes such a set.l

IV-5-2. Probabilities Induced in the Product Universe

Let P be a probability defined on the product epistemic algebra {Ig(Ux) of #(S;) x U(Sz). Then the
probability function P defined on the product epistemic algebra ﬁE(U@) by the expression

B(w) = P(T1(w)/Tle)

will be called the epistemic probability induced by IT and P in Ug($ ® S2].
The proof that P is a probability is straightforward and therefore it will be omitted here.

IV.5.3. The Nature of Probabilities in Product Universes

The injective nature of the Cartesian projection Il indicates that Ug(S) ® $2) may be regarded as
a set embedded in the Cartesian product U(S;) x U(S2). The epistemic probability is thus the result of
constraining probabilistic knowledge in U(S;) x U(S2) to those worlds that are possible after the knowledge
of two agents has been combined.

The foregoing developments have resulted in the introduction of two probability functions, P and f’,
in universes that, respectively, represent possible states of knowledge of two rational agents, on one hand,
and the results of the combining that knowledge, on the other. Through the Cartesian projection mapping
I1, these probabilities can be considered as defined on the same Cartesian space {($1) x U(S2), with the
function P being the conditional probability of P with respect to the subset TIg of U(S;) x U(Sz).

The unconditioned probability P represents possible states of knowledge of two agents, 4; and As, prior
to their combination. In such a state, it is conceivable for one of the agents, for example A;, to regard as
possible consideration by As of certain worlds that are logically inconsistent with the evidence available to
A;. The probability P{e, (£;) x eg(Eg]) is a measure of the joint degree of support given by A; and by Ap
to the possibility that the evidence known to A, supports £, and that the evidence known to A; supports
the truth of £2. It is explicitly assumed that neither A; nor Az know the evidence available to the cther. It
is then possible for one of them to consider that a propositicn may be true while the other (with different
evidence at his disposal) may know such proposition to be false.

The probability f’, on the other hand, represents the consensus of both agents after consideration of
the evidence available to both. Unlike P, which represents states of separate knowledge, the probability P
represents the result of their integration. Clearly, logical or physical impossibilities, represented by pairs
(£1,&2) in the complement IIg, cannot be assigned positive probabilities. The remaining possibilities,
represented by the set intersections &, (&) N &2(&2), are given probabilistic weights that are consistent with
the support values assigned prior to evidential combination and with the known relations between &;(¢))
and 52(6‘2).
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IV-5-4. Relations Between Inducing and Induced Probabilities
Proposition: Let P be the epistemic probability induced by P and II in Ug (S, ® S2). Further, assume
that P{Ilg) is positive.
Ifw in the subset algebra Qg(Ux), is such that w = e,(£1) X ex(&2) for some sentences &, in B(S,) and
€2 in @(52), then
= _ K.P(]’I(m)), ifw CIlg;
Plo) = {0, otherwise.

where k = P(ILg) ™! is a constant independent of w.
Proof: If
w=e1{é1) % 62(52) CIlg,

for some £, in § and £ in S2, then w NTlg = w and, clearly,
lg(w) = kP{w) .

Otherwise w NTlg = @ and
P(w) = Plw/Tlg) = 0.1

IV.5-5. Knowledge Combination as Conditionalization

It has been remarked in Section III-3-11 that epistemic probabilities may be interpreted as the result of
conditioning an epistemic probability P with respect to a support set k(£) that represents possible worlds
consistent with evidential observations. Furthermore, combination of two evidential bodies may be regarded
as the derivation of a conditional epistemic probability P(- /£, £2) from the probability functions P(- /£,)
and P(-/&).

Since, by virtue of the basic combination theorem, it is

e(f) = U [61(£1) ﬂéz(fz)] )

r(£)

then probabilistic knowledge combination can be regarded as the derivation of the conditional probabilities
P(&,(61) Néx{&2)/61,&2),

that allow computation of

Ple(&)/&1, &),

from the conditional probabilities

P(/&)=m(), P(/&)=ma().
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IV-6. Probability Masses in the Product Universe
IV-6-1. The Additive Combination Theorem

Theorem (Additive Combination Theorem): Let P bea probability defined on the product epistemic
algebra ﬁE(Ux) of Ug(S1 ® S2), and let m be its associated probability mass. Then, if £ is in ®(§, ® 52) it
is

m(€) = Y P(ai(&1) nex(£2)), (IV.2)
r(€) -

where the sum is over all pairs (£1, £2) in ®(81) x ®(S2) such that (&1, £2) is in T(E).
Furthermore, if P is the epistemic probability induced by P in U(81) X U(S2) and if P(Ilg) > 0, then

m(f) ==« E P(e1(&) x e2(&2))

r(€)
where
x=P(llg) ™"
is the only real constant that makes
Y om(€) =1.
&

Proof: The first part of the theorem follows at once from the basic combination theorem, the additive
properties of a probability, and the obvious fact that the sets

81 (&) Néy(&), ar(€)) néz(&l), £1,& € ¥(S1), and &, & € B(S2),

are disjoint if (&1, &) # (&1, £4)-
The second part of the theorem is also an immediate consequence of the proposition proved above, if it
is noted that
k= P(Ilg)™?,

and that

P(Ue(51® $2)) =) . m(£) =P(Mlg/Tg) =1 K
£



v
THE COMBINATION OF INDEPENDENT EVIDENCE

This section is devoted to the derivation of Dempster’s rule of combination from the bases provided by
the additive combination theorem and certain independence assumptions. The nature of these assumptions
and their meaning are discussed in terms of other concepts that were introduced in previous sections.

V-1. Probabilistic Independence

V-1-1. Independent Subalgebras

Let £1; and {lz be subalgebras of the subset algebra {1 of a set . Let P be a probability on X with
subset algebra {1, Then the subset algebras {2, and {I; are said to be independent with respect to the
probability P if and only if

P(wi Nwz) = P(w)P(wa)

whenever w; is in §2; and ws is in §15.

V-1-2. Independence Semantics

Independence between two subset algebras with respect to a probability is the formalization of the
notion that values of that probability function on one of the subset algebras do not depend {in a functional
sense} on the probability values on the other. In this case, the conditional probability P(- fw,], defined on
{12 for any member wy of {1; such that P{w;} > 0, is the same as the unconditioned probability P over {1,.

If two subset algebras, {1; and {lz, are independent with respect to the probability P, then the values
of P over the smallest subset algebra {2 that contains them will be known once P is specified separately over
1, and {I5. In addition, probability values over one of those algebras may be varied without affecting the
values over the other.

Sometimes the values of P over {2; and {17 are thought of as being the values of two different probability
functions P; and Pg, which are then said to be independent. This is one of the most frequent characteriza-
tions of statistical independence, which we do not use here, as it tends to obscure (by concealing the role of
a more encompassing probability function P}, the context under which probabilistic independence reduces
to functional independence.

V-1-3. The Dempst'er Combination Formula

Theorem (Dempster [6]): Let P be the epistemic probability induced in lg($1 ® S2) by a probability
P defined in the product epistemic algebra {ig(Ux) of U(S1) x U(S2). Assume that P(Ilg) > 0. Assume also
that the marginal epistemic algebras Uk {Ux) and 0% {Ux) of U(81) x U(S2) are independent with respect to
P.

Let m be the probability mass associated with the probability P in (51 ® $2), and my, and my be the
probability masses associated with P in the frames of discernment ®(5,) and ®(Sz], respectively. If £ is in
lI’(.S'l ® 52), then

m(€) =k > mi(&1)ma(&), (V.1)
T'(£)

27
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where the sum is over all pairs (€, &) in ®(S1) x $(8;) such that (€1, €2) is in T(£), and where & is the
only real constant such that
> om{é)=1.

£
Proof: Let £ and &; be such that e;[£)) x ez(€2) € Mg, and let &« = P{II)~'. Then, by the
hypothesis of independence, 1t follows that

P(el(&) X ez(fg)) = P(él(fl) n 62(52)) = P(él(&))P(ég(&)) = m; (€1} ma(&a).
The theorem follows at once from this equation and the additive combination theorem.ll |

V-1-4. Remark

The above formula is usually given for the case where §; = §2. The form given here allows combination
of knowledge over different frames of discernment.
V-1-5. Independence as Sensor Independence

In most applications, the underlying probability P describes the statistical behavior of a group of sensors,
or observers of a real world system. Under these conditions, independence of the marginal epistemic algebras
can be interpreted as the lack of influence of errors made by one sensing device on the statistical behavior
of the other. It is important to note, however, that the sensors (which, after all, are designed to perform
accordingly) will be affected by the state of the world.

Finally, it is important to note that using the interpretation of epistemic probability presented in Sections
111-3-11 and IV-5-6, the assumption of independence of the evidential bodies is equivalent to the condition

P(&1(&1) N&z(&)) = P(&:1(&1))P(E2(E2)), &1 A .

V-1-6. Combination with Certain Support Functions

Consider now the case where the probability P is such that
mg(?) = P(ég[?)) = 1,
for some sentence ¥ in the frame of discernment @®(S2). Then, it is clear that
Ple1(£1) x e2{&2)) =P(&1(61) N&2(&2)) =0,

if & ¢ 7.

Furthermore,

P(er(61) x e2(7)) = P(ea(61) x e2(F)) + D Plea(61) x e2(€2)) = Pler(&1) x U(S2)) = P(&r(&1))
EagbF

These equations imply that

P(21(6) n&:(&)) = P(&:(6))P(2:(E2)) -
The marginal epistemic algebras are, therefore, always independent whenever one of the corresponding
marginal probabilities is focused on a single epistemic set.
When U(S,) = U(S2) = U(S$), then application of the Dempster combination formula yields the well
known Dempster’s Rule of Conditioning
S(Ev-F)-S(-7)
1—8(—F) ’

S(E/7) =

Note also that
S(£/7) = P(k(E v -F)/K(F)) = = (k(; :f(;(s;));w t(7))




VI
SIMPLE FORMS OF DEPENDENT EVIDENCE

This section presents the results of applying the additive combination theorem to the combination of
evidential bodies that depend on each other in relatively simple forms described through mappings be-
tween frames of discernment that are called compatibility relations. Two classes of compatibility relations,
corresponding to deterministic and preobabilistic relationships, are investigated.

The results presented in this section can be described more accurately as formulas for the translation
or projection of knowledge, rather than as expressions for the integration of distinct evidential bodies. The
developments described in this section, however, generalize previous results of the Dempster-Shafer theory,
emphasizing the conceptual power of the formal structures presented in previous sections. More importantly,
as discussed in detail below, these developments provide insight into the nature of problems entailed in
combining evidence under various assumptions of probabilistic dependence. These combination formulas are
derived and studied in a related work [15].

VI-1. Compatibility Between Frames of Discernment

VI-1-1. Probabilistic Compatibility Relations

If the probabilistic distribution of the state of knowledge of a rational agent is a function of the state
of knowledge of another rational agent, then a probability distribution characterizing the uncertainty of the
latter can be used to derive the probability distribution for the states of knowledge of the former.

Theorem: Let P be the epistemic probability induced in Ug($1 ® S2) by a probability P defined in
the product epistemic algebra Qg (U} of U($1) x U(Sz). Assume that P(IIg) > 0.

Further, assume that the conditional mass assignments with respect to an objective sentence £, are
given by the function

m(E2/ &) = P(&2{E2) /81(E1)),

defined in ®(Sz) for every & in ®(S1) such that P(&1(£;)) > 0.

Assume also that /(&2 /€) =0 if e, (&1) X e2(&2) € Tg.

Let m and my be the probability masses associated with P in the subset algebras Qg(llg) and QL (Ug),
respectively. If £ is in @($; @ 52), then

m(€) = Y (&/E&)m (&), (VL.1)
r(¢)

where the sum is over all pairs (1, €2) in @(51) x ®(82) such that (&1, €2) is in T(£).

29
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Proof: Since fa(&2/£1) = 0 whenever e;(£,) X ez(£2) € Tlg, and since
Y (/€)= P(&(&)/61(6) = 1,
£
then, if 3~ * denotes a sum over all £5 in $($2) such that the pair (€1, &) is in T(£), it is

£a
Y om(€) =YD tm(E/E)mi(6) =) m(&)) m(&/6) =1
£ Ea

&1 & £

Therefore, £ = P(Ilg) = 1, and the theorem follows at once from the additive combination theorem.d

VI-1-2. Deterministic Compatibility Relations

Assume now that, to each sentence £; in the frame of discernment ®(§;) there corresponds a sentence
in the frame of discernment ®(5;), defined by a mapping

U P(5,) — &(S2),

which in turn defines a conditional probability P(- /&:(£1)) which is focused on the sentence ¥(£}) in the
frame of discernment ®(S2) with an associated probability mass assignment given by

- 1, i & =Y(&);
m(€2/ 1) = {O, otherwise.

In this case, the formula of the above theorem can be simplified to

m(€)= > m(&), €in®(5®S),
r(¢) ‘
where the sum is over all £ in S; such that (&, ¥(£))) is in T'{€).

If, for a given £ in ®(S;), the left hand sides are now added over all sentences £ in the frame of
discernment ®($; ® §2) such that (£, &) = (&1, (&), then the familiar result for the marginal probability
mass mg is obtained:

mo(E2)= > m(&).
w-i(6)

This result is usually described as a trapsiation formula that allows mapping of probabilistic knowledge
defined on one frame of discernment into another frame of discernment related to the former by deterministic
compatibility relations.

VI-1-3. Dependence on Support Sets

We will now discuss the combination of dependent knowledge when conditional mass functions defined
on one frame of discernment as a function of the known truth of a sentence in another frame of discernment .
have been provided. Unlike previous examples, where it was assumed that dependence information was
available in the form of the conditional probability values P(&;(£2)/&:(£,)), we shall now assume that
information is provided in the form of the conditional probability functions

P(-/ki(&)) : ORUx) = [0,1],

defined for every marginal epistemic support set k; (&), with £ in ©(S;), such that P(k,(&)) > 0.
Note that, if such information is provided, the marginal probabilities for the marginal algebra 0% (U )
are known because
ma(£2) = P(&2(6)) = P(&:(&) /ki(0))) -
Moreover, any specification of the conditional probability P( -/ El[&)) must be expected to be further
constrained, as shown by the following proposition:
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Proposition: Assume that P is a probability defined in the product epistemic algebra of U(51) x U($2).
Let .
€/ €1) = P(82(E2)/ ka(£1))

with £, in ®($,), & in ®{S2); and assume also that P(l-rl(fl]) > 0. Further, let 51 be the support function
associated with P in the marginal epistemic algebra Qf, of U(81) x U(S2).
Then, for every &2 in ®(Sz), the function

Si(- ©&):8(85) 0,1}, &2in B(S2),

defined by

51(61 0 &) =P(ki (&) N&(E2)) = M(&2/ &) Su(&),

satisfies Shafer’s axiom IIL5.
Proof: The proposition follows immediately from the relation

ki&)ng(&L)= |J [&(8)né(&)],

G= &2

where the union is over all § in &(5)) such that § = &, by application of the combinatorial theory results
leading to the inequality IIL.5.8

Corollary:

(60 &) =P(a(a)ne(&) = D (-1 915 (G0 &),
G=£1

where the sum is over all § in ®(§,) such that § = &,.

Proof: Follows at once from the above proposition by application of the Mobius inversion.l

By combining these results with the additive combination b'heorem, it is possible to derive the main
result of this section:
Theorem: Let the functions #(-/-) and 5,(- ® -} be defined as before. Assume also that

1’?1(6'2/51) =0, if 31((‘:1) X 82(52) g H@.

If € is in ®(S, © Sz), then it js

m(€)=>_ m(€0 &)

r(£)

=2, 2 nadsi(ges)

=2 2 (1B m(&/9)5(9),

L(£) G=&

where the sum is over all pairs (&, £2) in ®( 81} x ®(52) such that (&1, €2) isin T'(E) and over all § in ®(5,),
such that G = &;.

Proof: Follows immediately from the additive combination theorem and the fact that « = 1 (proved as
was done before when probabilistic compatibility relations were discussed).l
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VI-2. The Combination of Dependent Evidence

The results presented in this and previous sections illustrate the important role of the results discussed
in Section IV (particularly the additive combination theorem) for the derivation of evidence combination
rules under a wide variety of assumptions about the nature of the evidential bodies being combined and
their relations.

The basic framework in any such problem consists of the specification of probabilities over the marginal
epistemic algebras of the Cartesian product 4($1} x U(S2). These probability functions will always be
consistent, ‘since there will always exist a probability defined over the product epistemic algebra ﬁE(UX)
that extends a probability defined on both 0L (lx) and in 14(U x) (for example, that leading to the Dempster
combination formula)®.

In addition to these probabilities, which characterize the uncertainties inherent in each evidential body,
other probabilities may be defined over certain subalgebras {1 of the product episteinic algebra ﬁE(Ux). For
example, in the case of the Dempster formula, a probability is defined directly over that algebra by means
of the independence assumption (i.e., defining a value for P{e; (£} x e2(£2)) as a function of the values of
the marginal probabilities). Similarly, in the cases studied in this section, the conditional values m(€s/ &)
specify (together with the mass assignment m;) probabilities over members of (g(Ux) in a straightforward
manner.

The probabilities specified over £ must be consistent, however, with the marginal probabilities defined
over the marginal epistemic algebras (1}, and 0%. If the constraining probabilities are consistent with the
marginal distributions, the problem of combination reduces to that of extending P (defined over the marginal
epistemnic algebras and ﬁ) to the product epistemic algebra (g, thus allowing application of the results of
Section IV. As seen in Section III, this is equivalent the computation of the lower probabilities induced by
P.

For example, in an important” and more complex problem involving three mutually independent bodies
of evidence, probabilities are specified in three marginal epistemic algebras of the Cartesian product

Us = U[S1) x U(S2) x U(S3).

These probabilities represent the results P;z and P,3 of combining one body of evidence with each of
the other two (corresponding to probability specification over the marginal algebras 2}2(Ux) and Q33{U),
defined in a way that naturally extends the definitions of Section IV) plus actual knowledge of the probability
over the marginal epistemic algebra 2L{{x). These interrelated, consistent, probability functions must be
combined so as to extend P to the product epistemic algebra ﬁE(U x ), thus allowing application of the results
of Section IV.

A detailed treatment of these problems is given in a related paper [15].

$ Note, however, that conditioning with respect to the subset TLg of ¥(5,) x U(S2) may be impossible as P(TIg) may be
equal to zero indicating inconsistence of the bodies of evidence.

T The importance of this problem derives from its practical application to the combination of evidential bodies sharing
common knowledge.
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